VII. Surfaces and Dehn Fillings

The main question we want to address is
When can essential surfaces be created or distroyed by Dehn surgery?

Th ${ }^{m}$ 1:
Suppose $T^{2} \subset M^{3}$ is a torus in a 3-manifold, K is a knot on T^{2} and f is the framing on K coming from T^{2}

1) if T^{2} is separating, so $M \backslash T^{2}=M_{1}{ }^{\prime} \cup M_{2}^{\prime}$, then

$$
M_{K}(f)=M_{1} \# M_{2}
$$

where $M_{i}=M_{i}^{\prime} \cup \underbrace{2 \text {-handle }}_{\text {solid torus }} \frac{\text { 3 -handle }}{}$ and attaching sphere of 2 -handle is $K \subset \partial M_{2}^{\prime}$
2) if T^{2} is non-separating, so $M 1 T^{2}=\hat{M}$, then

$$
M_{K}(7)=M^{\prime} \# S^{\prime} \times s^{2}
$$

where $M^{\prime}=\hat{M} \cup \underbrace{2-h \cup 3-h}_{\text {solid }} \cup 2-h \cup 3-h$ and attaching spheres of 2 -handles is K on each boundary component of \hat{M}
exercise:
What is $M_{K}\left(f+\frac{1}{n}\right)$?
example:
given a knot $K \subset M$
let $N(K)$ be a neighborhood of K
choose the longitude-meridian basis for $H_{1}(\partial N)$ so curves on $\partial N(K)$ correspond to an elf of $\mathbb{Q u \{ \infty \}}$ the (p, q)-cable of K is the curve $K_{p, q}$ on $\partial N(K)$ realizing the homology class $p \lambda+q \mu$

exercise:
If K is null-homologous (so has a Seitert. framing) the the framing on $K_{p, q}$ given by $\partial N(K)$ is $p q$
so from $T h^{m} 1$ we see

$$
M_{K_{p, q}}(p q)=M_{K}(q / p) \#-L(p, q)
$$

this is because, $M \backslash \partial N(k)=(M-N(k)) \cup N(K)$
so we Dehn fill $M-N(K)$ and $N(K)=S^{3}-N(v)$
note: if $K \subset s^{3}$ then we see a surgery on
$K(p, q)$ gives a reducible manifold!
ie. $\left[\begin{array}{l}\text { an essential 2-sphere is created } \\ \text { by surgery! }\end{array}\right]$
Conjecture:
(Cabling conjeture of González-A cuña and Short) If $K \subset S^{3}$ and $S_{K}^{3}(r)$ is a non-trivial connected sum, then K is a (p.9)-cable of some knot and $r=p q$

Gordon-Lueche, 1987:
if $S_{K}^{3}(r)$ is a non-trivial connected sum then $r \in \mathbb{Z}$ and one of the summands is a lens space
Greene, 2015:
if $S_{K}^{3}(r)$ is a connect sum of lens spaces then 1) K is either a (p.q)-torus knot
or a $(p, 9)$-cable of $a_{n}(r, s)$ torus knot with $p=9 r s \pm 1$
2) $r=p q$
3)

$$
\begin{aligned}
S_{K}^{3}(r) & =-(L(p, q) \# L(q, p)) \text { or } \\
& -\left(L\left(p, p s^{2}\right) \# L(q, \pm 1)\right)
\end{aligned}
$$

respectively
Remark: The cabling conjecture is true for

1) alternating knots Menasco-Thistlethwaite, 1992
2) satellite knots Scharlemann, 1990 (and other families)
so Cabling conjecture can be formulated as "Surgeny on a hyperbolic knot is irreducible"
exercise:
Show $M_{K_{p, q}}^{3}(p q \pm 1)=M_{K}^{3}\left(\frac{p q \mp 1}{p^{2}}\right)$

Proof of Th ${ }^{m}$ 1:
let $N=$ nbhd of K

$$
\begin{aligned}
M_{\mathcal{F}}(K) & =\overline{M-N} \cup S^{1} \times D^{2} / \sim \\
& =\left\{\left[\overline{M_{1}^{\prime}-N} \cup \overline{M_{2}^{\prime}-N}\right] \cup\left[[0,1] \times D^{2} \cup[1,2] \times D^{2}\right]\right\} /
\end{aligned}
$$

now $T-N=$ annulus A
menidicial disks is $S^{\prime} \times D^{2}$ glued to $\partial A \quad S_{11}^{\prime} \times D^{2}$
let $D_{1}=\{0\} \times D^{2} \quad D_{2}=\{1\} \times D^{2} \subset[0,2] \times D^{2} / \sim$

$$
A \cup D_{1} \cup D_{2}=S^{2}
$$

and S^{2} splits $M_{y}(K)$ into 2 pieces
one is $\overline{M_{1}^{\prime}-N} \cup[0,1] \times D^{2}$
where $[0,1] \times D^{2}$ is glued along $[0,1] \times \partial D^{2}$

glued to $\partial\left(\overline{M_{1}^{\prime}-N}\right)$ along $K \subset T$
now $\partial\left[\left(\overline{M_{1}^{1}-N}\right) \cup[0,1] \times D^{2} / \sim\right]=S^{2}$
glue in B^{3} to get M_{1}
sinilaly get M_{2} and $M_{y}(k)=M_{1} \# M_{2}$
exercise: prove part 2
let T be a torus
the distance between two slopes r_{1}, r_{2} on T is

$$
\Delta\left(r_{1}, r_{2}\right)=\left|\gamma_{1} \cdot \gamma_{2}\right|
$$

where γ_{i} is a simple closed curve on τ representing r_{i}
exercise:

$$
\text { If } r_{i}=a_{i} / b_{i} \text {, then } \Delta\left(r_{1}, r_{2}\right)=\left|a_{1} b_{2}-a_{2} b_{1}\right|
$$

Th m 2 (Gordan-Litherland 1984):
let K be a knot in a 3-manifold with MVK irreducible. If $M_{K}(r)$ and $M_{K}(s)$ are reducible, then

$$
\Delta(r, s) \leq 4
$$

Corollary 3:
if K and M as above, then there are at most 6 district r such that $M_{r}(K)$ is reducible

Remarks:

1) Gordon-Luecke 1995:
improved $T_{h} \underline{\mu} 2$ to $\Delta(r, s) \leq 1$
\therefore at most 3 reducible surgenies
2) this bound is optimal:
let $K_{0}=K_{1} \# K_{2}$ in $\mu=\mu_{1} \# \mu_{2}$
where K_{i} are notrivical knots in non-simply connected irreducible homology Spheres M_{i}
let $K=(p, q)-$ cable of K_{0}
exencsé: $M-K$ is irreducible
note: $\quad M_{K}(\infty)=M=M_{1} \# M_{2}$

$$
M_{k}(p q)=M_{K_{0}}(q / p) \#-L(p, q)
$$

and $\Delta(\infty, p q)=\left|\frac{1}{0} \cdot \frac{p q}{1}\right|=1$
there are non-cable examples, but harder to describe

Question: is there a $K \subset M$ with MIK irreducible st. there are 3 reducible surgeries?

Proof of Cor 3:
let \& be a set of slopes on T with $\Delta(r, s) \leq n \forall r, s \in \mathcal{Z}$ Claim: we can choose coordriates on T such that

$$
\mathscr{L}^{\circ} \mathscr{R}_{n}
$$

where $\mathcal{S}_{n}=\{9 / b: 0 \leq a<b \leq 1\} \cup\{\infty\}$
given this note

$$
\mathcal{S}_{4}=\left\{\frac{0}{1}, \frac{1}{1}, \frac{n}{4}, \frac{1}{2}, \frac{b}{3}, \frac{1}{3}, \frac{2}{3}, \frac{10}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \infty\right\}
$$

has 8 elements
but $\Delta\left(\frac{1}{3}, \frac{3}{4}\right), \Delta\left(\frac{2}{3}, \frac{1}{4}\right), \Delta\left(\frac{1}{4}, \frac{3}{4}\right)>4$
so $\& \subset \&_{4}$ must omit at least 2 of $1 / 3,2,3,4,3 / 4$
\therefore corollary true!
for the claim consider the $n=1$ case
given $r_{1}, r_{2} \in \mathcal{L}$
exercise: \exists coordinates on τ st. $r_{1}=\frac{0}{1}, r_{2}=\frac{1}{0}$ (ie. r_{1}, r_{2} form a basis for $H_{1}(T)$)
so
 the only other curves that intersect r_{1}, r_{2} one time are $\frac{1}{1}, \frac{-1}{1}$

but $\Delta\left(\frac{1}{1}, \frac{-1}{1}\right)=2$ so can only have one of these
It $\frac{1}{1} \in \mathcal{Q}$ then $\& \leq\{a / b: 0 \leq a \leq b \leq 1\} \cup\{\infty\}$ if $r_{3}=\frac{-1}{1} \in \mathcal{L}$, then note $\left[\begin{array}{c}1 \\ -1\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
so it we take r_{2} and r_{3} as a basis for $H_{1}(T)$ then

$$
r_{1}=1 / 1 \quad r_{2}=1 / 0 \quad r_{3}=0 / 1
$$

so again $\& \leq \mathcal{L}$
now consider $n \geq 2$ choose $r_{1}, r_{2} \in \&$ with $\Delta\left(r_{1}, r_{2}\right)=n$
exercise: there are coordinates on τ st.

$$
\begin{aligned}
& r_{1}=\frac{1}{0} \text { and } r_{2}=\frac{a}{b} \text { with } \\
& 0 \leq a<b
\end{aligned}
$$

Hint: r_{1} is a basis vector for $H_{1}(\tau)$ the ne are lots of chases for r_{1}^{\prime} st. r_{1}, r_{1}^{\prime} is a basis, choose the right r_{1}.
now $\Delta\left(r_{1}, r_{2}\right)=1 \cdot b-0 . a=n$ so $b=n$ (and $a>0$ since $n \geq 2$)
if $r_{3}=\frac{c}{d} \in \mathcal{L}$ then we can assume $d \geq 0$ and so $\Delta\left(r_{1}, r_{3}\right)=d \leq n$

$$
\Delta\left(r_{2}, r_{3}\right)=|a d-n c| \leq n
$$

$\therefore a d-n c \leq n$ and $n c-a d \leq n$
so $-c \leq \frac{n-a d}{n} \Rightarrow c \geq \frac{a d}{n}-1>-1$
and $c \leq 1+\frac{a d}{n}<d+1$

$$
\therefore \quad 0 \leq c \leq d \leq n \quad \text { and } r_{3} \in \mathcal{L}_{n}
$$

now let's give a slick generalization of the corollary
lemma (Agol 2000):
let $\&$ be a collection of slopes on T^{2} with distance bounded by n. let p be any prime greaten than n. Then $|\&| \leq p+1$

Proof:
fix a basis for T^{2} so slopes correspond to pairs of relatively prime integens, up to sign.
each slope $\pm(a, b)$ gives a point in the projective line $P \mathbb{F}_{p}^{\prime}$ over the field \mathbb{F}_{p} by sending

$$
\begin{aligned}
& \mathbb{z}^{2} / \pm \longrightarrow P \mathbb{F}_{p}^{\prime} \\
& \psi \\
& \pm(a, b) \longmapsto[a ; b] \bmod P
\end{aligned}
$$

given $(a, b),(c, d) \in \mathcal{L}$ distinct points we know

$$
0<\left|\operatorname{det}\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\right|<p
$$

and so they map to distinct points of $P F_{p}^{\prime}$ exencsi: Show $\left|P F_{p}^{\prime}\right|=p+1$
so $|z| \leq p+1$

Suppose M and K are as in $T h=2$
if $M_{k}(r)$ is reducible, then the is an essential embedded $S^{2} \subset \mu_{k}(r)$
this S^{2} must intersect the surgery torus
(or else $M_{M}=M-N(k)$ would be reducible)
let $P=S^{2} \cap M_{k}$
assume S^{2} intersected the surgery torus minimally
lemma 4:
$(P, \partial P) \subset\left(M_{K}, \partial M_{K}\right)$ is an incompressible and boundary in compressible surface

Proof: if P is compressible we see

this contradicts minimality of intersections with surgery torus!
if P is boundary compressible we see

so we again find an S^{2} with fewer intersections $\therefore P$ is in compressible and boundary in compressible
so essential $S^{2 \prime}$ s in $M_{k}(r)$ yield
incompressible, boundary incompressible planar surfaces in M_{k}
note: all components of ∂P have the same slope on ∂M_{k} call the slope of one of these the boundary slope of P
let $P S\left(M_{k_{1}} \partial M_{k}\right)=$ set of boundary slopes of in comp., ∂-iv comp. planar surfaces in M_{K}

Th -5 :
If M is oriented and T is a component of ∂M then $\forall r, s \in P S(M, \tau), \Delta(r, s) \leq 4$
clearly π m 2 follows from lemma 4 and π / m
let V be a solid torus and $V^{\prime} \subset V$ a sub torus
(with V^{\prime} isotopic to V)
let $K_{p, q}$ be a $9 / p$ carve on $V^{\prime} p \geq 2$
let $C_{p, q}=\overline{V-n b h d\left(K_{p, q}\right)}$

$C_{p, g}$ is called the standard (p.g)-cable space
exercise:

1) $C_{p, 9}$ is a beifert fibered space oven an annulus with one singular tiber of order P
2) Cp,q is homeomorphic to Cpig'
\Leftrightarrow
$p=p^{\prime}$ and $q \equiv \pm q^{\prime} \bmod p$

If T is a torus boundary component of M then we say (M, τ) is (pig) cabled if M contains a submanifold C homeomorphic to $C_{p, q}$ such that $C \cap \partial M=T$
lemma 6:
if there are $r, s \in P_{g}(\mu, T)$ st $\Delta(r, s) \geq 5$ then (M, τ) is cabled
lemma 7: if (M, T) is cabled, then $\Delta(r, s) \leq 1$ for all $r, s \in P_{q}(M, T)$

Clearly $T^{m} 5$ (and hence $T h^{m} 2$) follow from 6 and 7
Proof of lemma 6 :
let M be an oriented 3 -manifold and $T^{2} \subset \partial M$ let $\left(P_{1}, \partial P_{i}\right) \subset(M, T)$ be an incompressible ∂-in compressible planar surface for $2=0,1$ with boundary slope r_{i} for P_{i} (assume P_{i} connected)
isotop so 1) P_{0} is transverse to P_{1}
2) each component of ∂P_{0} intersects each component of $\partial P_{1}, \Delta\left(r_{0}, r_{1}\right)$ times

$$
\text { so } P_{0} \cap P_{1}=A \| S
$$

where $A=$ disjoint union of properly embedded arcs
$S=$ disjoint union of embedded circles
to each P_{i} we get a graph Γ_{i} in S^{2} by locking at A in P_{i} and collapsing ∂-components of P_{i}.

lemma 8:
we can assume
(1) no component of $P_{0} \cap P_{1}$ bounds a disk in P_{i}
(2) no edge in P_{i} is an edge of a l-gone re. no

Proof:
(1) If $\subset \subset P_{0} \cap P_{1}$ bounds a disk D_{0} in P_{0} then since P_{1} is incompressible it bounds a disk D_{1} in P_{1} too we can replace D_{1} in P_{1} by D_{0} and then push P_{1} off P_{0} to remove C

(2) If a is an arc in P_{0} bounding a 1-gon D_{0} in P_{0} then D_{0} is a ∂-compressing disk for P_{1}
since P_{1} is 2 -incompressible a bounds a dish D_{1} in P_{1}

we can again swap D_{1} in P_{1} for D_{0} to elliminate the arc a.
let $n_{1}=$ number of boundary components of P_{i} so Γ_{i} has n_{i} verticies
and each vertex has valance Δn_{2+1} where $\Delta=\Delta\left(r_{0}, r_{1}\right),(2+1$ is taken $\bmod 2)$
note: can assume $n_{1}>1$ since if not then P_{i} is a disk
$\therefore \Gamma_{i}$ has no edges (if there were any edges there would be a 1-gon)
and hence $\Delta=0$ and $r_{0}=r_{1}$
lemma 9:
let Γ be a graph in S^{2} with no 1 -goons suppose that for some $n \geq 2$ every vertex has order great than $5(n-1)$ then Γ has a mutually parallel edges

Proof: one can assume Γ is connected (add edges) consider $n=2$
assume no parallel edges
so each face has at least 3 sides, so

$$
E \geq \frac{3 F}{2}
$$

(valence $>1 \Rightarrow$
where $V=\#$ vertices each edge touches
$E=\#$ edges 2 faces)
$F=\#$ faces
all venticies have ≥ 6 edges touching them so

$$
E \geq \frac{6 V}{2}
$$

so $2=V-E+F \leqslant \frac{1}{3} E-E-\frac{2}{3} E=0 \quad \nless$
\therefore there are parallel edges
in general, form Γ^{\prime} by identifying parallel edges

$$
\|_{\Gamma} \longrightarrow \overbrace{\Gamma^{\prime}}
$$

so P^{\prime} has no parallel edges and no 1-gons \therefore by above some vertex v has ≤ 5 edges but v has valance $>5(n-1)$ in Γ so v in Γ must have at least n mutually parallel edges
now assume $\Delta \geq 5$
so each vertex of Γ_{i} has order

$$
\Delta n_{2+1} \geq 5 n_{2+1}>5\left(n_{2+1}-1\right)
$$

$\therefore \Gamma_{i}$ has n_{1+1} mutually parallel edges denote the parallel edges A_{0}, \ldots, A_{n+1-1}
where A_{j} and A_{j+1} cobound a disk D_{j}
note: D_{j} are disjoint from $S E$ are les in

note: all oriented in same direction
the A_{j} are oriented and go from one ∂ component $\partial_{-} P_{1}$ to another $\partial_{t} P_{i}$
denote $\partial_{ \pm} A_{j} \in \partial_{ \pm} P_{i}$
label components of ∂P_{1+1} cyclically along T

so we see

so on $\partial_{+} P_{i}$ we get $\partial_{+} A_{j}=\pi(j)$ component of ∂P_{1+1} for some permutation π of $\left\{0, \ldots, n_{2+1}-1\right\}$ where π is of the form

$$
\pi(j)=\varepsilon j+5 \bmod n_{i+1}
$$

for $\varepsilon= \pm 1$ and some s
so we see

$\partial-P_{i}$

$\jmath \mapsto$ J

$j \mapsto-j+2$
clam': I has no fixed points
Proof: note: $\partial A_{j}={ }_{+} \cdot \cdot$
so we see

so must have $\varepsilon=+1$

$$
\therefore s=0 \text { and } \pi(j)=j \forall j
$$

so each A_{j} as seen on P_{1+1} is

an "inner most" one is a l-gon \varnothing

Case 1: $\varepsilon=-1$

$$
\pi^{2}(j)=\pi(-j+s)=j-s+s=j
$$

so $\pi^{2}=i d$ and thus $\left\{0,1, \ldots n_{1 t}-1\right\}$ is grouped in pairs $\{j, \pi(j)\}$
each pair gives 2 arcs A_{j} and $A_{\pi}(j)$ that bound a disk D in P_{i}.

consider $A_{j}, A_{\pi(j)}$ in $P_{\imath+1}$: get a circle c_{j}

for each; get a circle c_{j} in P_{1+1} and they are all disjoint, so an inner most C_{k} bounds a disk E whose intario is disjoint from other venticies so in P_{1+1} we see

and in P_{2} we see

in the Dehn filling $M\left(r_{1+1}\right)=M \cup V_{i+1}^{\text {® }}$ we see a Möbius band

$B=D_{\mu} \cup E \cup B^{\prime}$ is a Möbius band
note: $\partial B=\partial D$
so $B \cup D=\mathbb{R} P^{2} \subset M\left(r_{2+1}\right)$
and $K_{t+1}=$ core of V_{t+1} intersects $\mathbb{R} P^{2}$ once
in $\mathbb{R} P^{3}$ there is an $\mathbb{R} P^{2}$ and a knot K that intersects if one tine indeed, $\mathbb{R} P^{3}=$ (ubhd $\left.\mathbb{R} P^{2}\right) \cup B^{3}$

let $N=$ ibid of $\mathbb{R} P^{2}$ in $M\left(r_{1+1}\right)$ and

$$
M^{\prime}=\overline{\left(M\left(r_{2+1}\right)-N\right)} \cup 3-\text { ball }
$$

set $K=\left(K_{i+1} \cap \overline{\left(M\left(r_{i+1}\right)-N\right)}\right)$ closed up in M^{\prime} with an unknotted arc in 3-ball
clearly $M\left(r_{2+1}\right)=M^{\prime} \# \mathbb{R} P^{3}$
and $K_{2+1}=K^{\prime} \# K$
lemma 10:
(M, T) is a $(2,1)$-cable

Proof: $\mathbb{R} P^{3}=O^{2}$ let $K^{\prime}=$ core of surgery torus
note: $\mathbb{R} P_{k^{\prime}}^{3}=\mathbb{R} P^{3}-n b h d\left(K^{\prime}\right)=S^{1} \times D^{2}$
and a meridian of K^{\prime} on $S^{\prime} \times D^{2}$ is a curve of slope $1 / 2$
exerccsé:

$$
\left[\left(M_{1}, K_{1}\right) \#\left(\mu_{2}, K_{2}\right)\right]_{K_{1} \# K_{2}} \cong\left(M_{1}\right)_{K_{1}} U_{A_{1}=A_{2}}\left(\mu_{2}\right)_{K_{2}}
$$

where A_{i} is a ubhd of the mercian to K_{i} on $\partial\left(M_{i}\right)_{k_{i}}$
Hint:

So $M=\left(M\left(r_{2+1}\right)\right)_{K_{2+1}}=\left(M_{K^{\prime}}^{\prime}\right) U_{A}\left(\mathbb{R} P_{K^{\prime}}^{3}\right)$
let $T^{2} \times[0.1]$ be a unbid of $\partial\left(\mu_{K^{\prime}}^{\prime}\right)$
so $C=\left(T^{2} \times[0,1]\right) U_{A}\left(\mathbb{R} P_{K^{\prime}}^{3}\right)$

$$
s^{\prime} \times D^{2}=\pi P_{k^{\prime}}^{3}
$$

diffeomorphic to

zee. $C \cong$ standard (2,1)-cable space

Case 2: $\varepsilon=+1$
so $\pi(j)=j+S \bmod \left(n_{2+1}\right) \quad$ some $S \neq 0 \bmod \left(n_{n+1}\right)$ and so π has $d=g \cdot c \cdot d\left(n_{1+1}, s\right)$ orbits each containing $q=\frac{n_{2+1}}{d}$ points for each orbit θ there is a circle c_{θ} in Γ_{i+1} circles are disjoint so \exists an innermost one that bounds a disk $E_{\text {in }} P_{2+1}$
let $\theta=\left\{\imath_{1}<\ldots<i_{q}\right\}$
for $j=1, \ldots, 9$, let D_{j} be the disk on P_{i} between $A_{i j}$ and $A_{i_{j+1}}$
let $N=$ ubhd of $E \cup\left(U D_{j}\right)$ in M

$$
V=N \cup V_{2+1} \subset M\left(r_{2+1}\right)=M \cup V_{2+1}
$$

$\widehat{E}=E \cup$ q-mercdunal disks in V_{1+1} corresp. to $1_{11} \ldots, r_{9}$ boundary components of P_{2+1}
now $\vee \backslash \hat{E}=2$ copies of $\hat{E} \times[0,1]$ U $\underbrace{\text { g 1-handhes }}_{V_{i+1} \text { cut along }} \cup \underbrace{(9-1) 2 \text {-handles }}_{\text {nbhds of the } D_{j}}$ mendrainal dish

note: $V, \hat{E} \cong D^{2} \times[0,1]$ and we get V back by gluing $D^{2} \times\{0\}$ to $D^{2} x\{1\}$ with a theist
now remove a ubhd of $K_{2 t 1}$ from V to get a
$C_{9, p}$ cable space
so (M, T) is cabled
recall $C_{p, q}=\left(S^{1} \times D^{2}\right)$ - ibid $\left(K_{p, 9}\right)$ where K core of $S^{1} \times D^{2}$ call ∂ nbhd $\left(K_{p, q}\right) \subset \partial C_{p, q}$ the vine boundary and $\partial C_{p, q}-\partial$ nshd $\left(K_{p, q}\right)$ the out boundary
lemma 11:
every incompressible, ∂-incompressible, connected
planar surface in $C_{p, q}$ is of the following type
(1) an annulus with both boundary components on the inner boundary with slope iq
(2) an annulus with both boundary components on the outer boundary with slope $9 / p$
(3) an annulus with one boundary on outer boundary with slope $9 / p$ and the other on the inner boundary with slope pa.
(4) a surface with p inner boundary components of slope $\frac{1+k p q}{h}$ and one outa boundary with slope $\frac{1+k n g}{k p^{2}}$ (some k)
(5) a surface with one innit boundary of slope $\frac{l p^{2}}{m}$ and p outer boundary components of slope $\frac{l}{m}$ for some l and m st. $l p=1+m q$

Proof: recall such a surface E is either vertical (union of fibers) or horizontal (tronsverse to fibers)

vertical surfaces are

type (1)

type (2)

type (3)
horizontal surfaces
given Σ a horizontal surface
let A be an annulus of type (3)
$C_{p, 9} \backslash A=$ soled torus

A becomes 2 annuli A^{\prime} and $A^{\prime \prime}$ in $\partial\left(C_{p, q}(A)\right.$ these annuli have slope $9 / p$ to get Cig back again just reglve A^{\prime} to $A^{\prime \prime}$ we may shift along annuli
now $\sum \backslash A \subset C_{p, g} \backslash A$ is a horizontal surface in $C_{p, g} \backslash A$ re. a union of n mardianal disks each dish intusects A^{\prime} (and $A^{\prime \prime}$) in p intervals so $\Sigma=n$ O-handles u np 1 -handles
so $x(\Sigma)=n(1-p)$
$(\Sigma \backslash A) \cap A^{\prime}=n p$ intervals
when gluing A^{\prime} to $A^{\prime \prime}$ can shift so $2^{\text {th }}$ interval is glued to $(1+m)^{\text {th }}$ intaval

exercise: for \sum to be connected need nim relatively prime
on the inner boundary:
$\partial \Sigma \cdot($ fiber of libration $)=p n$
$\partial \sum \cdot($ mention $)=m$
so in this basis slope is $\frac{p n}{m}$ we use framing on inine, boundary that differs from tiber framing by $+p q$ so slope is $\frac{p(n+m q)}{m}$ and there are

$$
d_{1}=g \cdot c \cdot d \cdot(p(n+m q), m)=g c \cdot d \cdot(p, m)
$$

components
alternate computation:
it shit $m=0$ then get ph $(0,1)$
now of shift by m in direction $(1, p q)$
get $p_{n}(0,1)+m(1, p q)=(m, p n+p q m)$
so slope is $\frac{p(n+q m)}{m}$
on the out boundary:
arguing as in alter nate computation above we see

$$
n(0,1)+m\left(\rho_{1} q\right)=\left(m \rho_{1} n+q m\right)
$$

so slope is $\frac{n+9 m}{m p}$
and there are

$$
d_{2}=g \cdot c \cdot d \cdot\left(m p_{1} n+q m\right)=g \cdot c \cdot d \cdot(p, n+q m)
$$

components
note m and n tam are relatuely prime so d_{1} and d_{2} are too
ie. $p=d_{1} d_{2} a$ some $a \geq 1$

$$
\therefore \quad d_{2} \leqslant P / d_{1}
$$

since Σ is planar we have

$$
\begin{aligned}
-x(\Sigma)=n(\rho-1) & =d_{1}+d_{2}-2 \\
& \leq d_{1}+p / d_{1}-2 \\
& \leq p-1 \quad\left(1 \leq d_{1} \leq \rho\right)
\end{aligned}
$$

$\therefore n=1$ and all inequalities are equalities
so either $d_{1}=1$ and $d_{2}=p$ or $d_{1}=p$ and $d_{2}=1$
in the first case we have $1+q m=l p$
So we are in case (5)
in the second case we have $m=p k$ some k so we are in case (4)

Proof of lemma 7:
we need to see that if (μ, T) is cabled then

$$
\Delta(r, s) \leq 1 \text { for all } r, s \in P 2(M, T)
$$

first let $C \subset M$ be a cable space with

$$
\partial C=T_{\substack{\lambda \\ \text { inner }}}^{\Perp} \underset{\substack{\text { outer }}}{T^{\prime}}
$$

and set $M^{\prime}=\overline{M-C}$
let $(P, \partial P) C(M, T)$ be an incompressible, ∂-incompressible, connected, planar surface
choose P so that $P \cap T^{\prime}$ is minimal among all such surfaces with the same boundary slope

Claim: $P \cap C$ and $P \cap M^{\prime}$ are incompressible
Proof: let D be a compressing disk in M^{\prime} for $P \cap M^{\prime}$
$\partial D=\gamma \subset P$ bounds a disk $D^{\prime} \subset P$
D^{\prime} must intersect T^{\prime} or D would not be a compressing dish for $P \cap M^{\prime}$ replace D^{\prime} in P with D and get a new surface P^{\prime} that intersects T^{\prime} fewer times $\$$ choice of p same argument for $P \cap C$
Claim: $P \cap C$ and $P \cap M^{\prime}$ are boundary incompressible Proof: we need
lemma 12:
If $(\Sigma, \partial \Sigma) \subset(M, \partial M)$ is in compressible and $\partial \Sigma c$ torus component of $\partial \mu$ then it is also ∂-in compressible or an annulus
(will be isotopic into ∂M if M irreducible)
given this we are done sivice if $P \wedge M^{\prime}$ or $P \cap C$ were not ∂-incompressible then it would be an annulus and we could replace it by one in T ' and then isotop to reduce intersection with $T^{\prime} \otimes$
we will prove lemma 12 after we finish proof of lemma 7 so $P \cap C$ is a union of pieces from lemmall
2.e. it can be I) Annulus with both ∂ components on T with slope 9/p
II) Annulus with one ∂ on T with slope $\%$ and other on T^{\prime} of slope $p q$ U annuli with both boundory components on T^{\prime}
III) a surface with $\rho \partial$ components on T of slope $\frac{1+k p q}{k}$ and one on T ' of slope $\frac{1+k p q}{k p^{2}}$
IV) a surface with one ∂ component on τ of slope $\frac{l p^{2}}{m}$ and q on T^{\prime} with slope $\frac{l}{m}$ where $l_{q}=1+\mathrm{mp}$
suppose P is of type IV), then note $P \cap M^{\prime}$ must be p disks so P is a disk with boundary on T
note: a neighborhood N of $P \cup T$ is
a solid torus with a ball removed

$$
\therefore M=M^{\prime} \#\left(S^{\prime} \times D^{2}\right) \text { and } T=\partial\left(S^{\prime} \times D^{2}\right)
$$

and the orly incompressible surface is the meridional disk so lemma true!
the distance between surfaces of Type I) and II) is O, and between one of Type I) or II) and III) is 1
so we are left to see the distance between 2 surfaces of type III) is ≤ 1 suppose P_{1}, P_{2} are 2 such surfaces their slopes on T are $r_{2}=\frac{1+k_{1} p q}{k_{i}}$ and on

T' are $r_{2}^{\prime}=\frac{1+k_{2} p q}{k_{1} p^{2}}$ for $k_{1} \neq k_{2}$
$\therefore \Delta\left(r_{1}, r_{2}\right)=\left|k_{1}-k_{2}\right|$ and $\Delta\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=p^{2}\left|k_{1}-k_{2}\right|$
if $p \geq 3$ or $p=2$ and $\left|k_{1}-k_{2}\right| \neq 1$ then by lemma $6\left(M^{\prime}, T^{\prime}\right)$ is cabled so we are done unless (M, T) cabled so \exists coordinates on T^{\prime} st.

$$
r_{2}^{\prime}=\frac{1+k_{1}^{\prime} p^{\prime} q^{\prime}}{k_{2}^{\prime}}
$$

changing coordinates by $\left(\begin{array}{cc}1 & -p^{\prime} q^{\prime} \\ 0 & 1\end{array}\right)$ gives

$$
r_{1}^{\prime}=\frac{1}{k_{1}^{\prime}}
$$

but in other coordinates we have $r_{2}^{\prime}=\frac{1+k_{i} p q}{k_{2} p^{2}}$
$\therefore \exists$ a coordinate change $\left[\begin{array}{ll}x & y \\ z & w\end{array}\right] \in G L(z, z)$
st. $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]\left[\begin{array}{l}k_{2} p^{2} \\ 1+k_{2} p q\end{array}\right]=\left[\begin{array}{c}k_{2}^{\prime} \\ 1\end{array}\right] \quad\left(=\left[\begin{array}{c}-k_{2}^{\prime} \\ -1\end{array}\right]\right)$

$$
\begin{align*}
& z k_{2} p^{2}+w\left(1+k_{2} p q\right)= \pm 1 \\
& w+k_{i} p(p z+w q)
\end{align*}
$$

subtracting

$$
\left(k_{1}-k_{2}\right) p(p z+q w)=0 \text { or } \pm 2
$$

if $=0$ we get $p z+q w=0$
and pluging into $*$ gives $w= \pm 1$
$\therefore \quad q= \pm p z \quad \$$ pig rel. prime
in the other 2 cases we have $p=2$ and

$$
\left|k_{1}-k_{2}\right|=1 \quad \text { so } \Delta\left(r_{1}, r_{2}\right)=1
$$

Proof of lemma 12:
let D be a ∂-compressing dish for Σ

Case 1: $\partial \beta$ on same component of $\partial \Sigma$

Slice D is connected a nbhd of $\partial \beta$ in β lies on the same side of $\partial \Sigma$ in $T^{2} \partial M$ so \exists an arc $\gamma \subset \partial \sum$ such that $\beta \cup \gamma$ bound a disk Δ in T note $\alpha \cup \gamma$ is a circle in \sum that bounds a disk D U \triangle
\sum incompressible $\Rightarrow \alpha \cup \gamma$ bound a disk in $\Sigma \notin D$ a ∂-compressing disk/

Case 2: $\partial \beta$ in district components of $\partial \Sigma$

a nbhd $N(D)=D \times[-1,1]$ sit.
$N(D) \cap \Sigma=N(\alpha)$ ubhd α in Σ
$N(D) \cap T=N(\beta)$ abd β in T
let $D_{ \pm}=D \times\{ \pm 1\}$
and $\partial D_{ \pm}=\alpha_{ \pm} \cup \beta_{ \pm}$
note: $\gamma=\left[\left(\delta_{1} \cup \delta_{2}\right)-\left[\left(\delta_{1} \cup \delta_{2}\right) \cap \partial N(\beta)\right]\right] \cup\left(\alpha_{+} \cup \alpha_{-}\right)$
is a simple closed curve in Σ and if $\Delta=$ annulus $\delta_{1} \cup \delta_{2}$ bounds
minus $N(\beta)$

then γ bounds the disk $D_{+} \cup \Delta \cup D_{-}$
$\therefore \gamma$ bounds a disk E in Σ since Σ is in compressible

$$
\therefore \Sigma=E \cup N(\alpha)=\text { annulus! }
$$

exenusé: if M is irreducible show Σ isotopic into $a M$
or more generally $\exists M$ ', M " such that $\Sigma \subset M^{\prime}$ and cobounds a solid torus S with an annulus in ∂M^{\prime} and $M=M^{\prime} \# M^{\prime \prime}$ where connected sum is done in S

